Dong Han Kim

Research Division, Wyeth Laboratories, Inc., Box 8299, Philadelphia, PA 19101 Received January 23, 1981

5H-Benzothiazolo[3,2-a]quinazolin-5-ones (Va-d) were synthesized by thermal cyclization of N-(2-benzothiazolyl)-2-fluorobenzamides (IVa-d) which were obtained by allowing 2-fluorobenzoyl chloride to react with 2-aminobenzothiazoles.

J. Heterocyclic Chem., 18, 801 (1981).

In a previous communication (1) I have described a facile synthesis of 5H-benzoxazolo[3,2-a]quinazolin-5-ones (II) by the treatment of disodium salt of N-(2-hydroxyphenyl)anthranilic acids (I) with cyanogen bromide. The thermal cyclization of N-(2-benzoxazolyl)-2-fluorobenzamides (III) which were prepared from 2-fluorobenzovl chloride and 2-aminobenzoxazoles was an alternative route for the compounds (Scheme I). Our efforts in the search for a novel antiinflammatory lead compound led me to extend the work with the synthesis of benzothiazolo[3,2-a]quinazolin-5-ones by the latter method. Only a few reports on the angular benzothiazoloquinazoline are found in the literature: Modi, et al (2), described the synthesis of 8,9,10,11-tetrahydro-5Hbenzothiazolo[3,2-a]quinazolin-5-ones, and Shulga reported on 1,2,3,4-tetrahydrobenzothiazolo[3,2-a]quinazolin-12-ium salts (3,4).

SCHEME I

Treatment of 2-aminobenzothiazole with 2-fluorobenzovl chloride in the presence of triethylamine afforded N-(2-benzothiazolyl)-2-fluorobenzamide (IVa) in a 76% yield (Scheme II). Other intermediates prepared similarly

are listed in Table I.

SCHEME IT

The cyclization of IVa was effected by fusion neat for a few minutes giving Va in a 45% yield. The product showed an infrared absorption band at 6.00 u which is attributable to the carbonyl group at the 5-position, and the combustion analysis agreed with the formula C14H2N2OS. Furthermore, in support of the structure V, the

Table I N-(2-Benzothiazolyl)-2-fluorobenzamides

				Analysis						
				C, %		Н, %		N, %		
X	Mp (°C)	Yield, %	Formula	Calcd.	Found	Calcd.	Found	Calcd.	Found	
Н	158-161	76	C ₁₄ H ₉ FN ₂ OS	61.75	61.76	3.33	3.13	10.29	10.33	
Cl	225-228	60	C14H8CIFN2OS	54.82	54.89	2.63	2.57	9.13	8.99	
OMe	177-180	89	$C_{15}H_{11}FN_{2}O_{2}S$	59.59	59.74	3.67	3.52	9.27	9.33	
OEt	169-171	81	$C_{16}H_{13}FN_2O_2S$	60.74	60.94	4.14	4.12	8.86	8.80	
	H Cl OMe	H 158-161 Cl 225-228 OMe 177-180	H 158-161 76 Cl 225-228 60 OMe 177-180 89	H 158-161 76 C ₁₄ H ₉ FN ₂ OS Cl 225-228 60 C ₁₄ H ₈ ClFN ₂ OS OMe 177-180 89 C ₁₅ H ₁₁ FN ₂ O ₂ S	X Mp (°C) Yield, % Formula Calcd. H 158-161 76 C ₁₄ H ₉ FN ₂ OS 61.75 Cl 225-228 60 C ₁₄ H ₈ CIFN ₂ OS 54.82 OMe 177-180 89 C ₁₈ H ₁₁ FN ₂ O ₂ S 59.59	X Mp (°C) Yield, % Formula Calcd. Found H 158-161 76 C ₁₄ H ₉ FN ₂ OS 61.75 61.76 Cl 225-228 60 C ₁₄ H ₈ ClFN ₂ OS 54.82 54.89 OMe 177-180 89 C ₁₈ H ₁₁ FN ₂ O ₂ S 59.59 59.74	X Mp (°C) Yield, % Formula Calcd. Found Calcd. H 158-161 76 C ₁₄ H ₉ FN ₂ OS 61.75 61.76 3.33 Cl 225-228 60 C ₁₄ H ₈ CIFN ₂ OS 54.82 54.89 2.63 OMe 177-180 89 C ₁₅ H ₁₁ FN ₂ O ₂ S 59.59 59.74 3.67	X Mp (°C) Yield, % Formula Calcd. Found Found H 158-161 76 C ₁₄ H ₉ FN ₂ OS 61.75 61.76 3.33 3.13 Cl 225-228 60 C ₁₄ H ₉ CIFN ₂ OS 54.82 54.89 2.63 2.57 OMe 177-180 89 C ₁₅ H ₁₁ FN ₂ O ₂ S 59.59 59.74 3.67 3.52	C, % H, % N, X Mp (°C) Yield, % Formula Calcd. Found Calcd. Found Calcd. H 158-161 76 C₁₄H₅FN₂OS 61.75 61.76 3.33 3.13 10.29 Cl 225-228 60 C₁₄H₅CIFN₂OS 54.82 54.89 2.63 2.57 9.13 OMe 177-180 89 C₁₅H₁FN₂O₂S 59.59 59.74 3.67 3.52 9.27	

 $\label{thm:constraint} Table \ II \\ 5H\text{-Benzothiazolo} [3,2\text{-}a] \text{quinazolin-5-ones}$

Compound			Yield, %	Formula	X	C, %		Н, %		N, %	
No.	X	Mp (°C)				Calcd.	Found	Calcd.	Found	Calcd.	Found
Va	Н	233-235	45	C,4H,N,OS		66.66	66.54	3.20	3.15	11.11	11.09
Vb	Cl	349-350	60	C, H, CIN, OS		58.64	58.59	2.46	2.56	9.77	9.92
Vc	OMe	277-279	54	$C_{15}H_{10}N_{2}O_{2}S$		63.83	63.73	3.57	3.55	9.93	10.04
Vd	OEt	218-221	79	C, H, N, O, S		64.84	64.85	4.08	4.15	9.46	9.45

desulfurization of the product with Raney nickel in refluxing ethanol afforded 1-phenyl-1,4-quinazolin-4-one. An unlikely but possible alternative structure VII was ruled out by direct comparison of the product with the linear isomer (VII) prepared by the method described by McCarty (5) (Scheme III); the melting point of the binary mixture of the two was depressed. Table II lists 5H-benzothiazolo-13.2-alguinazolin-5-ones prepared in this study.

SCHEME III

EXPERIMENTAL

Melting points were determined in capillary tubes using a Thomas-Hoover melting point apparatus and are uncorrected. Ir spectra were obtained in potassium bromide pellets using a Perkin-Elmer 21 spectro-photometer, and Nmr spectra were taken on a Varian XL-100 spectro-meter using tetramethylsilane as the internal reference. Combustion elemental analyses were performed by the Analytical Section of these laboratories.

N-(2-Benzothiazolyl)-2-fluorobenzamide (IVa).

To a stirring mixture of 2-aminobenzothiazole (14 g), triethylamine (9.4 g) and benzene (300 ml) was added slowly 2-fluorobenzoyl chloride (15 g). The resulting mixture was stirred at room temperature for 1 hour, then heated under reflux for 0.5 hour. After being cooled to room temperature, the mixture was filtered. The filtrate was concentrated on a rotary evaporator under reduced pressure to about 50 ml. The precipitate that separated was collected on a filter, washed with ether

and recrystallized from ethyl acetate giving 19.2 g of the product (see Table I); ir: μ 5.98 (C=O); nmr (deuteriochloroform): a complex aromatic multiplet centered at δ 7.50 (8H) and an exchangeable singlet at δ 10.50 ppm (NH). Compounds IVb-d (see Table I) were similarly prepared (see Table I).

Analysis

5H-Benzothiazolo[3,2-a]quinazolin-5-one (Va).

Three g of IVa were fused neat for about 5 minutes using a gas burner in a well ventilated hood. The solid mass thus obtained was crushed to powder and triturated with ethanol, then recrystallized from dimethylformamide, giving 1.25 g (45%) of the product. Compounds Vb-d were similarly prepared (see Table II).

1,4-Dihydro-phenylquinazolin-4-one (VI).

A mixture of Va (2.65 g), Raney nickel (9 g) and ethanol (250 ml) was heated under reflux for 6 hours and filtered hot. When the filtrate was allowed to set at room temperature overnight, a precipitate was separated. The precipitate was collected on a filter and washed with ethanol giving 1.5 g of the unreacted starting material. The filtrate was concentrated to about 20 ml on a rotary evaporator, and the concentrated solution was set at room temperature overnight. The precipitate that exparated was collected on a filter and recrystallized from ethyl acetate twice, giving VI. The mp (181-182°) and spectral data of the product agreed with those reported by Irwin (6).

REFERENCES AND NOTES

- (1) D. H. Kim, J. Heterocyclic Chem., 18, 287 (1981).
- (2) S. K. Modi, S. Singh and K. S. Narang, Indian J. Chem., 10, 605 (1972).
- (3) S. I. Shulga and V. A. Chuiguk, Ukr. Khim. Zh., 37, 350 (1971); Chem. Abstr., 75, 76720d (1971).
- (4) S. I. Shulga and V. A. Chuiguk, Ukr. Khim. Zh., 39, 66 (1973); Chem. Abstr., 78, 111247r (1973).
 - (5) J. E. McCarty, J. Org. Chem., 27, 2672 (1962).
 - (6) W. J. Irwin, J. Chem. Soc., Perkin Trans. I, 353 (1972).